
* Sixu Di , Mitchell E. Daniels, Jr. School of Business, Purdue University West Lafayette, 47901,

USA, sdi@purdue.edu

2789-5890/© Shuangqing Academic Publishing House Limited All rights reserved.
Article history: Received November 30, 2023 Accepted January 18, 2024 Available online

January 19, 2024

To cite this paper: Sixu Di (2024). Enhancing Blockchain Stability with LSTM-Based PoW Difficulty
Adjustment: A Deep Learning Approach. Journal of New Economics and Finance, Vol4, Issue1,

Pages 1-12.
Doi: https://doi.org/10.55375/jnef.2024.4.1

1

Enhancing Blockchain Stability with LSTM-Based PoW

Difficulty Adjustment: A Deep Learning Approach

Sixu Di*

Mitchell E. Daniels, Jr. School of Business, Purdue University West Lafayette, 47901, USA.

Abstract: This article introduces an advanced difficulty adjustment algorithm for the Ethereum

blockchain built on the Proof-of-Work (PoW) mechanism, utilizing deep learning to maintain low

volatility in block difficulty and generation time. Simulations with actual data demonstrate that the

algorithm based on Long Short-Term Memory (LSTM) networks outperforms other baseline models

in maintaining this low volatility. The study indicates that LSTM is more effective in controlling

data volatility and can capture the trends in the original test dataset. Despite the limitations in

runtime associated with deep learning methods, the research also presents potential approaches to

reduce training time through incremental learning and explores the prospects of implementing this

method on the Bitcoin chain.

Keywords: Blockchain, Proof-of-Work (PoW), Difficulty Adjustment Algorithm, Bitcoin

1. INTRODUCTION

Blockchain technology has surged across various sectors, including manufacturing, academic

institutions, and financial organizations. At its core, blockchain aims to establish a decentralized

ledger comprised of a series of blocks, each containing transaction information. The methodology

Journal of New Economics and Finance

ISSN: 2789-5890(print)

Shuangqing Academic Publishing House

Contents lists available at www.qingpress.com

Journal homepage: qingpress.com/en-us/journals/10

Journal of New Economics and Finance, 2024, Vol4, Issue1, Pages 1-12

mailto:sdi@purdue.edu
http://www.qingpress.com/

2

for generating these blocks hinges on consensus algorithms, with Proof-of-Work (PoW) [1], [2]

currently serving as the widely adopted consensus mechanism, notably in Bitcoin [3] and Ethereum

[4].

In PoW-based blockchains, miners, representing users who engage in the mining process, employ

their computational power to solve intricate mathematical puzzles associated with each block. The

expected time to solve such puzzles is directly proportional to their difficulty, influenced by the

collective computing power, or hash rate, contributed by network participants. The miner who

successfully finds a solution enjoys the privilege of propagating the newly created block to all users.

The average time span between consecutive block timestamps defines the block production time.

Given the direct link between block difficulty and block production time, effective difficulty control

is paramount to the stability of PoW-based blockchains. An ideal difficulty control algorithm must

ensure consistent block generation and prompt convergence of block production time to the desired

value, regardless of fluctuations in network hash rate, thus facilitating efficient and reliable

transactions.

Numerous studies have addressed Bitcoin's difficulty control, proposing enhanced algorithms for

scenarios such as exponentially increasing hash rates [5], coin-hopping attack mitigation [6], and

securing hash rate commitments through bonds [7]. Additionally, research efforts have delved into

stochastic models for block production time and analyses of marginal distribution within Bitcoin [8].

Nonetheless, the development of a universal difficulty control algorithm applicable to all PoW-

based blockchains remains a pressing challenge [9].

In general, well-designed difficulty control algorithms should adhere to specific requirements, as

explicitly outlined by Ethereum [9]. These can be consolidated into two main categories:

 Simplicity & Low Memory: The algorithm should be straightforward, not relying on an

extensive historical block record, and should be easy to implement. To reach consensus, block

difficulty calculations should solely consider information within block headers.

 Fast Updating & Low Volatility: The algorithm should swiftly readjust block production times

in response to network hash rate changes, with block difficulty exhibiting minimal fluctuations

in cases of constant network hash rates. Furthermore, the difficulty control algorithm should

not incentivize miners to manipulate timestamps.

Beyond difficulty control, blockchain technology has found applications beyond cryptocurrencies.

Bitcoin [3], as the pioneering blockchain application, introduced decentralized currency systems and

spearheaded blockchain technology. Blockchain's tamper-proof and immutable nature has extended

its utility to timestamp proof [10], [11] and evidence preservation [12]. Additionally, the advent of smart

contracts has catalyzed the decentralization of centralized services, most notably in supply chain

management [13].

3

The quest for more stable blockchain services has drawn attention to various technical aspects. This

comprehensive literature review particularly concentrates on enhancing block time stability, an

essential requirement in blockchain design. Block time stability in PoW-based blockchains hinges

on two critical variables: the network's hash rate and the block's difficulty target. Maintaining block

time stability mandates precise matching between the difficulty target and the total hash rate.

Consequently, the design of a proficient difficulty adjustment algorithm is pivotal to blockchain

design [3].

Bitcoin's difficulty adjustment algorithm, which recalibrates the block's difficulty target every two

weeks based on the generation time of the latest 2016 blocks, has enabled Bitcoin's stable operation

for over a decade. The rapidly changing network hash rate is due to the volatility of crypto economic

cycles. Consequently, researchers have embarked on endeavors to enhance it. Notable contributions

encompass Fullmer's (Daniel Fullmer & A Stephen Morse，2017) exploration of expected value and

variance in block time, along with modeling block time [14]. Beyond adjusting difficulty targets,

addressing vulnerabilities stemming from malicious nodes, such as coin-hopping attacks, has

become crucial [15]. To accommodate exponential hash rate increases, Kraft (D. Kraft，2016)

proposed a novel difficulty adjustment algorithm exhibiting superior performance under such

circumstances [5]. Additionally, Zhang (Shulai Zhang&Xiaoli Ma，2020) introduced a difficulty

adjustment algorithm reliant on a two-layer neural network, using past block times as real-time input

for adjustment decisions [16]. Nevertheless, assessing whether these algorithms can ensure block time

stability necessitates further experimentation.

As a hard fork of Bitcoin, Bitcoin Cash boasts a superior difficulty adjustment algorithm [17]. It

updates the difficulty based on the timestamps of the latest 144 blocks, providing a timelier

adjustment compared to Bitcoin. Consequently, the system must possess the capability to accurately

forecast the network's overall hash rate, making precise hash rate prediction a central concern. Zheng

(Kaiwen Zheng et al.2020) introduced a linear predictor to forecast the entire network's hash rate

and subsequently proposed a difficulty adjustment algorithm based on this methodology [18]. Bonded

mining, which ensures miners' commitments to specific hash rates through bonded pledges [19],

allows for real-time adjustments to the difficulty target. This approach places real-time control over

the network's hash rate. While bonded mining admirably fulfills this requirement, it does introduce

certain constraints for participating miners. It mandates a minimum miner hash rate of 1%, which

could potentially limit the participation of smaller miners, thereby possibly encouraging miner

conglomeration.

In summary, blockchain's difficulty control and stability present complex and critical challenges,

spanning consensus algorithms, hash rate prediction, difficulty adjustments, and more. Future

research endeavors will continue to explore innovative solutions to ensure the stable operation of

4

blockchains, aligning with the ever-expanding array of applications.

2. PROBLEM FORMULATION

Similar to [16], blocks are generated at the time instances t0 ≤ t1 ≤ t2 ≤ ⋯ with t0 = 0 . The

time between two instances Xn = tn − tn−1 is called the block production time (BPT) of the nth

block. Assume Xn is exponentially distributed with a rate λ, which changes according to the hash

rate and difficulty ratio. By observing the previous BPT and adjusting the difficulty, the goal is to

reach a constant target BPT Xtarget.

Based on [4], the difficulty is controlled to trace the hash rate in an effort to maintain a stable BPT.

In Ethereum, a general difficulty control algorithm can be written as:

dn = (1 + μf(Xn−1)) × dn−1

(1)

f(X) = {
1 − αX, if 1 − αX ≥ −99
−99. if 1 − αX ≤ −99

(2)

where μ =
1

2048
 is the step size, and α =

1

9
 is the control factor to achieve Xtarget = 13s.

Although the current Ethereum difficulty control algorithm can maintain a relatively stable

performance, there are still existing challenges. First, the current difficulty control algorithm is hard

to be adjusted to reach a specific target BPT value. Second, because the difference between adjacent

difficulties is limited, the difficulty cannot be adjusted with the hashrate synchronously and

adaptively.

To mitigate such problems, as aforementioned, several approaches have been proposed to address

the challenges. Zheng (Kaiwen Zheng et al.2020) introduced the use of a linear predictor to forecast

the entire network’s hashrate with both smoothed BPT and integrated BPT and subsequently

proposed a difficulty adjustment algorithm based on this methodology [18]. However, while the

prediction was capable of generating a value that was close to the actual value, in some cases, such

as sudden change in hash rate, the predicted value was considerably higher or lower than the actual

value.

Zhang (Shulai Zhang&Xiaoli Ma，2020) further introduced a difficulty adjustment algorithm reliant

on a two-layer neural network, using past block times as real-time input for adjustment decisions

[16]. This algorithm provided quite an improvement in the abnormal changes control in the process

of difficulty adjustment algorithm, shedding lights on the application of deep-learning methods on

difficulty prediction.

In this research, we propose an advanced difficulty control algorithm from signal processing point

of view. We point out that the adjustment of difficulty with linear predictor can perform much better

5

when replacing integrated BPT and smoothed BPT with LSTM algorithm to capture past

information of Xn, thereby improving the stability of BPT.

3. ALGORITHM DESIGN

3.1 Design of the indicator

In Zheng’s (Kaiwen Zheng et al.2020) work, they used smoothed BPT and integrated BPT as

indicator to calculate PoW term PTn
pred

 in the following formula [18]:

dn
p

=
Xtarget

PTn
pred

(1 + μf(Xn−1)) × dn−1

The smoothed BPT is represented as followed:

Sn =
Xn + Xn−1 + ⋯ + Xn−ps+1

ps

The integrated BPT is expressed as:

Ii =
X(i−1)pI+1 + X(i−1)pI+2 + ⋯ + XipI

pI

However, since both of these methods are using linear indicators, it will be dramatically affected by

the fluctuation, or some extreme situation caused by Xn. To address such problem, we construct a

LSTM model to better capture the information in the past.

The LSTM (Long Short Term Memory) model is a well-established deep-learning algorithm

specifically designed to address long-term memory problems. It was firstly introduced to deal with

natural language processing problems such as machine translation and article generation, but it also

excels in time series data prediction problem in Malhotra’s (Malhotra et al. 2015) [20] work for

anomaly detection in time series. In our case, to overcome certain extreme possibilities, we apply

LSTM to calculate the proper indicator of the PoW term.

LSTM networks consist of an input layer, one or more hidden layers, and an output layer. The

number of neurons in the input layer corresponds to the number of explanatory variables (feature

space), while the number of neurons in the output layer represents the output space. The

distinguishing feature of LSTM networks lies in the hidden layer(s), which are comprised of

memory cells. Each memory cell is equipped with three gates — the forget gate, the input gate, and

the output gate — that manage and adjust its cell state.

For every step in the prediction of our indicators, we set {Xn} as our input series, the hidden state

is h, the output state is yn, which is the indicator that we need. We modified every state in the

following equation based on the structure of LSTM:

1. Input gate:

it = σ(WiXt + Uiht−1 + bi)

2. Forget gate:

ft = σ(WfXt + Ufht−1 + bf)

6

3. Output gate:

ot = σ(WoXt + Uoht−1 + bo)

4. Cell state updates:

ct = ft ⊙ ct−1 + it ⊙ tanh (WcXt + Ucht−1 + bc)

5. Hidden state updates:

ht = ot ⊙ tanh (ct)

After the renovation of LSTM, the final outcome of yn learning result of all the information in the

past by Xn.

3.2 Baseline Model

In order to further examine and test the capability of our model, we construct baseline models of

RNN (Recurrent Neural Networks) and NAR (Neural Autoregressive Networks) to examine

whether LSTM excels in the assignment of volatility control.

3.2.1 RNN Model

RNNs are a class of supervised machine-learning models made of artificial neurons with one or

more feedback loops [21]. The feedback loops are recurrent cycles over time or sequence [22]. RNNs

are extremely good at modeling sequential data for sequence recognition and prediction [23].

A simple RNN has three layers: input, recurrent hidden, and output. The input to this layer is a

sequence of vectors through time. The input units in a fully connected RNN are connected to the

hidden units in the hidden layer.

The basic idea of the RNN network is to use the internal multi-hop loop to ensure the continuous

transmission of data, and the network updates the weight through backward propagation. However,

the activation function (a) used in this network model is a sigmoid function with saturation, which

causes the gradient to become very large or very small under the propagation of the activation

function, so there is a problem of gradient mutation or gradient attenuation, which affects the

predictability. This cannot be corrected. In order to solve the long-term data dependence of RRNs,

Hochreiter and Schmidhuber (Wang Yumeng，2014) put forward the LSTM neural network model

[24] in 1997, which introduced gates to form neural units with special memory, so as to better solve

the problems of gradient attenuation and gradient explosion caused by time series data in the

learning process. There are three kinds of gate structures in each neural network layer of the LSTM

structure as shown in Figure 1, which are output gate ot, forgetting gate ft and input gate it. These

gate structures use recursive equations to constantly update the cell state Ct and activate the mapping

from the input gate to the output gate.

7

Figure 1 LSTM schematic diagram

The value of the forgetting gate is determined by the input xt at time t and the output ht-1 at time t -

1, and the activation function adopted is the sigmoid function, which is expressed as:

ft = σ(Wf · [ht−1, xt] + bf)

When the value of the forgetting gate is obtained, the input gate is used to add the obtained new

information to the state, so as to replace the old information in the past, and its expression is:

𝑖𝑡 = 𝜎（𝑊𝑖 · [ℎ𝑡𝑖1, 𝑋𝑡] + 𝑏𝑖）

Multiply the above two and add the information of forgetting gate to get a new Ct, which is expressed

as:

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐)

The result of the output gate is the latest state Ct, the output value Ht -1 at time T-1 and the input

value Xt at current time T, which are processed by the forgetting gate and the input gate. At this time,

the activation functionαis no longer a sigmoid function, but a tanh function, so that the required

information can be output from the output gate.

Forgetting gate ft determines what information the neural unit abandons. By reading the states of ht-

1 and xt, this gate layer can output a value between 0 and 1 from the forgetting gate, where 0

represents complete abandonment and 1 represents complete retention. The value to be updated by

the neural unit is determined by the input gate it, which will forget the information filtered by the

gate and use the lanh function to update the state of the neural unit. Finally, the output gate ot

determines the output state of the neural unit. The state of the neural unit to be output is first

determined by the general sigmoid layer, and according to these states, it is compressed by tanh

function between -1 and 1 [25].

In our case, we construct a simple RNN model to predict our indicator and renovate in the formula

as follows:

Similarly, we assume {Xn} to be our input series, ht to be our output at time t, then we have:

ht = fw(ht−1, Xt)

where fw is a nonlinear transformation function, here we apply a sigmoid function to activate the

network. The output of the model ht is mapped to the corresponding output value yt̃ through a

fully connected layer ffc
:

  ottot bXhWo   ,1

8

yt̃ = ffc
(ht)

After training, the trained model is used to make predictions. The entire process can be represented

using the following equation:

yt+1̃ = ffc
(fw(ht, Xt))

3.2.2 NAR Model

The Nonlinear Autoregressive (NAR) model is a class of nonlinear time series models that aims to

capture the complex nonlinear relationships among variables in a time series. It is typically used for

forecasting and predictive modeling in various fields, such as finance, economics, and engineering.

The NAR model extends the traditional autoregressive (AR) model by introducing nonlinear

transformation functions of past observations. In other words, it models the dependency of the

current observation on not only the past observations but also on nonlinear transformations of those

observations. This allows the model to capture more complex patterns and dependencies within the

time series.

In our case, we continually apply NAR model to construct our baseline model. Similarly, we assume

{Xn} to be our input series. We construct the network as follows:

1. Firstly, transform the input sequence into a form that can be input into a neural network:

Xi =
1

ω
∑ Xj

i

j=i−ω+1

2. The input sequence is transformed linearly and non-linearly to obtain the hidden state:

hi = max(0, WhXi + bh)

3. The output is obtained by linear transformation of the hidden state:

yi = Wohi + bo

4. RESULTS

(a) (b)

9

(c) (d)

Figure 1: Real BPT (a) and Predicted PoW Term of LSTM (b), NAR (c), and RNN (d)

Figure 1 displays the predicted PoW Term of LSTM (Long Short Term Memory), NAR (Nonlinear

Autoregressive), and RNN (Recurrent Neural Networks) in red lines. It shows that their predicted

results are roughly the same. However, compared with the real BPT (the blue line), the predictions

of the three algorithms have small fluctuations, with a larger lower bound, smaller upper bound, and

more symmetrical structures. Moreover, focusing on the shape of their lower bound, LSTM is the

most similar one to the original test data.

Table 1: Standard Deviation of prediction of LSTM, NAR, and RNN

LSTM NAR RNN

After prediction 0.8700 1.0411 1.0390

(a) (b)

10

(c)

Figure 2: Standard Deviation of LSTM (a), NAR (b), and RNN (c)

The standard deviation of test sets before prediction is 1.2713. As Table 1 shows, the three

algorithms can reduce the volatility of the predicted data, especially for LSTM. Figure 2

demonstrates the details of the changes in standard deviation as the amount of sample data increases.

The red lines are the predicted results of LSTM, NAR, and RNN, respectively. The blue lines are

the results of corresponding test datasets before prediction. Figure 2 has the additional information

that as the amount of data increases, the standard deviation converges. Among them, the

convergence value of LSTM is slightly smaller than 1, which is the opposite of NAR and RNN,

indicating less volatility of BPT as we attempt to apply LSTM models. Such results are meaningful

when dealing with tasks like prediction of BPT as LSTM are more capable of absorbing information

in the past.

5. DISCUSSION

The objective of the report is to explore the volatility control capabilities of LSTM, using the other

two machine learning algorithms, RNN and NAR, as the baseline. In the results section, we compare

their prediction results and prediction standard deviation with the original test set. Among the

algorithms, LSTM has the best performance since it is more effective in controlling the volatility of

data; meanwhile, it can capture the changing trend of the original test dataset.

Our work also provides a solution for current difficulty adjustment algorithms. The suggested

technique aimed to be reliable enough to minimize the deviation of difficulty variations, resulting

in more stable generation of blocks. Our method maximized the probability to produce equal and

consistent difficulty outputs from chains in network.

However, more issues could also be investigated. Our deep learning approach has its natural

limitation in its running time, and it’s of significance to introduce incremental learning to reduce

training time. Also, it will be more popular if this method can be implemented on the chains of

Bitcoin, in which we believe our strategy will also work well.

6. CONCLUSION

11

In this paper, we propose an advanced difficulty control algorithm for PoW-based Ethereum using

a deep-learning method. Simulations based on real data reveal that our LSTM-based algorithm

preserves the low volatility of the block difficulty as well as its producing time compared with other

baseline models.

REFERENCES

[1] C. Dwork and M. Naor(1992). “Pricing via processing or com-batting junk mail,” in Annual

International Cryptology Conference. Springer, pp. 139–147.

[2] A. Back et al.(2002). “Hashcash-a denial of service countermeasure,” [Online]. Available:

http://www. hashcash.org/papers/amortizable.pdf

[3] Nakamoto, S. (n.d.). Bitcoin: A Peer-to-Peer Electronic Cash System. Bitcoin.

https://bitcoin.org/en/bitcoin-paper

[4] G. Wood et al.(2014). “Ethereum: A secure decentralised generalised transaction ledger,”

Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[5] D. Kraft(2016), “Difficulty control for blockchain-based consensus systems,” Peer-to-Peer

Networking and Applications, vol. 9, no. 2, pp. 397–413.

[6] D. Meshkov, A. Chepurnoy, and M. Jansen(2017), “Short paper: Revisiting difficulty control

for blockchain systems,” in Data Privacy Management, Cryptocurrencies and Blockchain

Technology. Springer, pp. 429– 436.

[7] G. Bissias, D. Thibodeau, and B. N. Levine (2019) . “Bonded mining: Difficulty adjustment by

miner commitment,”in Data Privacy Management, Cryptocurrencies and Blockchain

Technology. Springer, pp. 372–390.

[8] D. Fullmer and A. S. Morse(2018), “Analysis of difficulty control in bitcoin and proof-of-work

blockchains,” in 2018 IEEE Conference on Decision and Control (CDC). IEEE, pp. 5988–

5992.

[9] Design rationale of Ethereum. [Online]. Available:

https://github.com/Ethereum/wiki/wiki/Design-Rationale#difficulty-update-algorithm

[10] Thomas Hepp, Alexander Schoenhals, Christopher Gondek, and Bela Gipp(2018).

Originstamp: A blockchain-backed system for decentralized trusted timestamping. it-

Information Technology, 60(5-6):273–281.

[11] Yuan Zhang, Chunxiang Xu, Nan Cheng, Hongwei Li, Haomiao Yang, and Xuemin

Shen(2019). Chronos+: An accurate blockchain-based timestamping scheme for cloud

storage. IEEE Transactions on Services Computing, 13(2):216–229.

[12] Wenqi Yan, Jiachen Shen, Zhenfu Cao, and Xiaolei Dong(2020). Blockchain based digital

evidence chain of custody. In Proceedings of the 2020 The 2nd International Conference on

12

Blockchain Technology, pages 19–23.

[13] Menghui Lou, Xiaolei Dong, Zhenfu Cao, and Jiachen Shen(2021). Sescf: A secure and

efficient supply chain framework via blockchain-based smart contracts. Security and

Communication Networks.

[14] Daniel Fullmer and A Stephen Morse(2018). Analysis of difficulty control in bitcoin and

proof-of-work blockchains. In 2018 IEEE Conference on Decision and Control (CDC), pages

5988–5992. IEEE.

[15] Dmitry Meshkov, Alexander Chepurnoy, and Marc Jansen(2017). Short paper: Revisiting

difficulty control for blockchain systems. In Data Privacy Management, Cryptocurrencies

and Blockchain Technology, pages 429– 436. Springer.

[16] Shulai Zhang and Xiaoli Ma(2020). A general difficulty control algorithm for proof-of-work

based blockchains. In ICASSP 2020-2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 3077–3081. IEEE, 2020.

[17] Amaury Séchet(2017). Implement simple moving average over work difficulty adjustment

algorithm. D601, Accepted Proposal for Bitcoin Cash. https://reviews.bitcoinabc.org.

[18] Kaiwen Zheng, Shulai Zhang, and Xiaoli Ma(2020). Difficulty prediction for proof-of-work

based blockchains. In 2020 IEEE 21st International Workshop on Signal Processing

Advances in Wireless Communications (SPAWC), pages 1–5. IEEE.

[19] George Bissias, David Thibodeau, and Brian N Levine(2019). Bonded mining: Difficulty

adjustment by miner commitment. In Data Privacy Management, Cryptocurrencies and

Blockchain Technology, pages 372– 390. Springer.

[20] Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015, April). Long Short Term Memory

Networks for Anomaly Detection in Time Series. In Esann (Vol. 2015, p. 89).

[21] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

[22] T. Mikolov, M. Karafi´at, L. Burget, J. Cernock `y, and S. Khudanpur(2010), “Recurrent neural

network based language model.” in Interspeech,vol. 2, p. 3

[23] Y. Bengio, P. Simard, and P. Frasconi(1994).“Learning long-term dependencies with gradient

descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2, pp. 157–166.

[24]Wang Yumeng(2014). Financial volatility analysis and prediction based on symbolic time series

analysis [D]. Tianjin University.

[25]Huang Min Hao(2019). Analysis of stock price trend based on time series [J]. Modern

Marketing: Academic Edition, (12):2.

