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Abstract: This article introduces an advanced difficulty adjustment algorithm for the Ethereum 

blockchain built on the Proof-of-Work (PoW) mechanism, utilizing deep learning to maintain low 

volatility in block difficulty and generation time. Simulations with actual data demonstrate that the 

algorithm based on Long Short-Term Memory (LSTM) networks outperforms other baseline models 

in maintaining this low volatility. The study indicates that LSTM is more effective in controlling 

data volatility and can capture the trends in the original test dataset. Despite the limitations in 

runtime associated with deep learning methods, the research also presents potential approaches to 

reduce training time through incremental learning and explores the prospects of implementing this 

method on the Bitcoin chain. 
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1. INTRODUCTION 

Blockchain technology has surged across various sectors, including manufacturing, academic 

institutions, and financial organizations. At its core, blockchain aims to establish a decentralized 

ledger comprised of a series of blocks, each containing transaction information. The methodology 
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for generating these blocks hinges on consensus algorithms, with Proof-of-Work (PoW) [1], [2] 

currently serving as the widely adopted consensus mechanism, notably in Bitcoin [3] and Ethereum 

[4]. 

In PoW-based blockchains, miners, representing users who engage in the mining process, employ 

their computational power to solve intricate mathematical puzzles associated with each block. The 

expected time to solve such puzzles is directly proportional to their difficulty, influenced by the 

collective computing power, or hash rate, contributed by network participants. The miner who 

successfully finds a solution enjoys the privilege of propagating the newly created block to all users. 

The average time span between consecutive block timestamps defines the block production time. 

Given the direct link between block difficulty and block production time, effective difficulty control 

is paramount to the stability of PoW-based blockchains. An ideal difficulty control algorithm must 

ensure consistent block generation and prompt convergence of block production time to the desired 

value, regardless of fluctuations in network hash rate, thus facilitating efficient and reliable 

transactions. 

Numerous studies have addressed Bitcoin's difficulty control, proposing enhanced algorithms for 

scenarios such as exponentially increasing hash rates [5], coin-hopping attack mitigation [6], and 

securing hash rate commitments through bonds [7]. Additionally, research efforts have delved into 

stochastic models for block production time and analyses of marginal distribution within Bitcoin [8]. 

Nonetheless, the development of a universal difficulty control algorithm applicable to all PoW-

based blockchains remains a pressing challenge [9]. 

In general, well-designed difficulty control algorithms should adhere to specific requirements, as 

explicitly outlined by Ethereum [9]. These can be consolidated into two main categories: 

 Simplicity & Low Memory: The algorithm should be straightforward, not relying on an 

extensive historical block record, and should be easy to implement. To reach consensus, block 

difficulty calculations should solely consider information within block headers. 

 Fast Updating & Low Volatility: The algorithm should swiftly readjust block production times 

in response to network hash rate changes, with block difficulty exhibiting minimal fluctuations 

in cases of constant network hash rates. Furthermore, the difficulty control algorithm should 

not incentivize miners to manipulate timestamps. 

Beyond difficulty control, blockchain technology has found applications beyond cryptocurrencies. 

Bitcoin [3], as the pioneering blockchain application, introduced decentralized currency systems and 

spearheaded blockchain technology. Blockchain's tamper-proof and immutable nature has extended 

its utility to timestamp proof [10], [11] and evidence preservation [12]. Additionally, the advent of smart 

contracts has catalyzed the decentralization of centralized services, most notably in supply chain 

management [13]. 
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The quest for more stable blockchain services has drawn attention to various technical aspects. This 

comprehensive literature review particularly concentrates on enhancing block time stability, an 

essential requirement in blockchain design. Block time stability in PoW-based blockchains hinges 

on two critical variables: the network's hash rate and the block's difficulty target. Maintaining block 

time stability mandates precise matching between the difficulty target and the total hash rate. 

Consequently, the design of a proficient difficulty adjustment algorithm is pivotal to blockchain 

design [3]. 

Bitcoin's difficulty adjustment algorithm, which recalibrates the block's difficulty target every two 

weeks based on the generation time of the latest 2016 blocks, has enabled Bitcoin's stable operation 

for over a decade. The rapidly changing network hash rate is due to the volatility of crypto economic 

cycles. Consequently, researchers have embarked on endeavors to enhance it. Notable contributions 

encompass Fullmer's (Daniel Fullmer & A Stephen Morse，2017) exploration of expected value and 

variance in block time, along with modeling block time [14]. Beyond adjusting difficulty targets, 

addressing vulnerabilities stemming from malicious nodes, such as coin-hopping attacks, has 

become crucial [15]. To accommodate exponential hash rate increases, Kraft (D. Kraft，2016) 

proposed a novel difficulty adjustment algorithm exhibiting superior performance under such 

circumstances [5]. Additionally, Zhang (Shulai Zhang&Xiaoli Ma，2020) introduced a difficulty 

adjustment algorithm reliant on a two-layer neural network, using past block times as real-time input 

for adjustment decisions [16]. Nevertheless, assessing whether these algorithms can ensure block time 

stability necessitates further experimentation. 

As a hard fork of Bitcoin, Bitcoin Cash boasts a superior difficulty adjustment algorithm [17]. It 

updates the difficulty based on the timestamps of the latest 144 blocks, providing a timelier 

adjustment compared to Bitcoin. Consequently, the system must possess the capability to accurately 

forecast the network's overall hash rate, making precise hash rate prediction a central concern. Zheng 

(Kaiwen Zheng et al.2020) introduced a linear predictor to forecast the entire network's hash rate 

and subsequently proposed a difficulty adjustment algorithm based on this methodology [18]. Bonded 

mining, which ensures miners' commitments to specific hash rates through bonded pledges [19], 

allows for real-time adjustments to the difficulty target. This approach places real-time control over 

the network's hash rate. While bonded mining admirably fulfills this requirement, it does introduce 

certain constraints for participating miners. It mandates a minimum miner hash rate of 1%, which 

could potentially limit the participation of smaller miners, thereby possibly encouraging miner 

conglomeration.  

In summary, blockchain's difficulty control and stability present complex and critical challenges, 

spanning consensus algorithms, hash rate prediction, difficulty adjustments, and more. Future 

research endeavors will continue to explore innovative solutions to ensure the stable operation of 
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blockchains, aligning with the ever-expanding array of applications. 

2. PROBLEM FORMULATION 

Similar to [16], blocks are generated at the time instances t0 ≤ t1 ≤ t2 ≤ ⋯  with t0 = 0 . The 

time between two instances Xn = tn − tn−1 is called the block production time (BPT) of the nth 

block. Assume Xn is exponentially distributed with a rate λ, which changes according to the hash 

rate and difficulty ratio. By observing the previous BPT and adjusting the difficulty, the goal is to 

reach a constant target BPT Xtarget. 

Based on [4], the difficulty is controlled to trace the hash rate in an effort to maintain a stable BPT. 

In Ethereum, a general difficulty control algorithm can be written as: 

dn = (1 + μf(Xn−1)) × dn−1 

(1) 

f(X) =  {
1 − αX, if 1 − αX ≥ −99
−99. if 1 − αX ≤  −99

 

(2) 

where μ =  
1

2048
 is the step size, and α =  

1

9
 is the control factor to achieve Xtarget = 13s. 

 

Although the current Ethereum difficulty control algorithm can maintain a relatively stable 

performance, there are still existing challenges. First, the current difficulty control algorithm is hard 

to be adjusted to reach a specific target BPT value. Second, because the difference between adjacent 

difficulties is limited, the difficulty cannot be adjusted with the hashrate synchronously and 

adaptively. 

To mitigate such problems, as aforementioned, several approaches have been proposed to address 

the challenges. Zheng (Kaiwen Zheng et al.2020) introduced the use of a linear predictor to forecast 

the entire network’s hashrate with both smoothed BPT and integrated BPT and subsequently 

proposed a difficulty adjustment algorithm based on this methodology [18]. However, while the 

prediction was capable of generating a value that was close to the actual value, in some cases, such 

as sudden change in hash rate, the predicted value was considerably higher or lower than the actual 

value. 

Zhang (Shulai Zhang&Xiaoli Ma，2020) further introduced a difficulty adjustment algorithm reliant 

on a two-layer neural network, using past block times as real-time input for adjustment decisions 

[16]. This algorithm provided quite an improvement in the abnormal changes control in the process 

of difficulty adjustment algorithm, shedding lights on the application of deep-learning methods on 

difficulty prediction. 

In this research, we propose an advanced difficulty control algorithm from signal processing point 

of view. We point out that the adjustment of difficulty with linear predictor can perform much better 



5 

 

when replacing integrated BPT and smoothed BPT with LSTM algorithm to capture past 

information of Xn, thereby improving the stability of BPT. 

3. ALGORITHM DESIGN 

3.1 Design of the indicator 

In Zheng’s (Kaiwen Zheng et al.2020) work, they used smoothed BPT and integrated BPT as 

indicator to calculate PoW term PTn
pred

 in the following formula [18]: 

dn
p

=  
Xtarget

PTn
pred

(1 + μf(Xn−1)) × dn−1 

The smoothed BPT is represented as followed: 

Sn =  
Xn + Xn−1 + ⋯ + Xn−ps+1

ps
 

The integrated BPT is expressed as: 

Ii =  
X(i−1)pI+1 + X(i−1)pI+2 + ⋯ + XipI

pI
 

 

However, since both of these methods are using linear indicators, it will be dramatically affected by 

the fluctuation, or some extreme situation caused by Xn. To address such problem, we construct a 

LSTM model to better capture the information in the past. 

The LSTM (Long Short Term Memory) model is a well-established deep-learning algorithm 

specifically designed to address long-term memory problems. It was firstly introduced to deal with 

natural language processing problems such as machine translation and article generation, but it also 

excels in time series data prediction problem in Malhotra’s (Malhotra et al. 2015) [20] work for 

anomaly detection in time series. In our case, to overcome certain extreme possibilities, we apply 

LSTM to calculate the proper indicator of the PoW term. 

LSTM networks consist of an input layer, one or more hidden layers, and an output layer. The 

number of neurons in the input layer corresponds to the number of explanatory variables (feature 

space), while the number of neurons in the output layer represents the output space. The 

distinguishing feature of LSTM networks lies in the hidden layer(s), which are comprised of 

memory cells. Each memory cell is equipped with three gates — the forget gate, the input gate, and 

the output gate — that manage and adjust its cell state. 

For every step in the prediction of our indicators, we set {Xn} as our input series, the hidden state 

is h, the output state is yn, which is the indicator that we need. We modified every state in the 

following equation based on the structure of LSTM: 

1. Input gate: 

it = σ(WiXt + Uiht−1 + bi) 

2. Forget gate: 

ft = σ(WfXt + Ufht−1 + bf) 
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3. Output gate: 

ot = σ(WoXt + Uoht−1 + bo) 

4. Cell state updates: 

ct = ft ⊙ ct−1 + it ⊙ tanh (WcXt + Ucht−1 + bc) 

5. Hidden state updates: 

ht = ot ⊙ tanh (ct) 

After the renovation of LSTM, the final outcome of yn learning result of all the information in the 

past by Xn. 

3.2 Baseline Model 

In order to further examine and test the capability of our model, we construct baseline models of 

RNN (Recurrent Neural Networks) and NAR (Neural Autoregressive Networks) to examine 

whether LSTM excels in the assignment of volatility control. 

3.2.1 RNN Model 

RNNs are a class of supervised machine-learning models made of artificial neurons with one or 

more feedback loops [21]. The feedback loops are recurrent cycles over time or sequence [22]. RNNs 

are extremely good at modeling sequential data for sequence recognition and prediction [23]. 

A simple RNN has three layers: input, recurrent hidden, and output. The input to this layer is a 

sequence of vectors through time. The input units in a fully connected RNN are connected to the 

hidden units in the hidden layer. 

The basic idea of the RNN network is to use the internal multi-hop loop to ensure the continuous 

transmission of data, and the network updates the weight through backward propagation. However, 

the activation function (a) used in this network model is a sigmoid function with saturation, which 

causes the gradient to become very large or very small under the propagation of the activation 

function, so there is a problem of gradient mutation or gradient attenuation, which affects the 

predictability. This cannot be corrected. In order to solve the long-term data dependence of RRNs, 

Hochreiter and Schmidhuber (Wang Yumeng，2014) put forward the LSTM neural network model 

[24] in 1997, which introduced gates to form neural units with special memory, so as to better solve 

the problems of gradient attenuation and gradient explosion caused by time series data in the 

learning process. There are three kinds of gate structures in each neural network layer of the LSTM 

structure as shown in Figure 1, which are output gate ot, forgetting gate ft and input gate it. These 

gate structures use recursive equations to constantly update the cell state Ct and activate the mapping 

from the input gate to the output gate. 
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Figure 1 LSTM schematic diagram 

The value of the forgetting gate is determined by the input xt at time t and the output ht-1 at time t -

1, and the activation function adopted is the sigmoid function, which is expressed as: 

ft = σ(Wf · [ht−1, xt] + bf) 

When the value of the forgetting gate is obtained, the input gate is used to add the obtained new 

information to the state, so as to replace the old information in the past, and its expression is: 

𝑖𝑡 = 𝜎（𝑊𝑖 · [ℎ𝑡𝑖1, 𝑋𝑡] + 𝑏𝑖） 

Multiply the above two and add the information of forgetting gate to get a new Ct, which is expressed 

as: 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐) 

The result of the output gate is the latest state Ct, the output value Ht -1 at time T-1 and the input 

value Xt at current time T, which are processed by the forgetting gate and the input gate. At this time, 

the activation functionαis no longer a sigmoid function, but a tanh function, so that the required 

information can be output from the output gate. 

 

Forgetting gate ft determines what information the neural unit abandons. By reading the states of ht-

1 and xt, this gate layer can output a value between 0 and 1 from the forgetting gate, where 0 

represents complete abandonment and 1 represents complete retention. The value to be updated by 

the neural unit is determined by the input gate it, which will forget the information filtered by the 

gate and use the lanh function to update the state of the neural unit. Finally, the output gate ot 

determines the output state of the neural unit. The state of the neural unit to be output is first 

determined by the general sigmoid layer, and according to these states, it is compressed by tanh 

function between -1 and 1 [25]. 

In our case, we construct a simple RNN model to predict our indicator and renovate in the formula 

as follows: 

Similarly, we assume {Xn} to be our input series, ht to be our output at time t, then we have: 

ht = fw(ht−1, Xt) 

where fw is a nonlinear transformation function, here we apply a sigmoid function to activate the 

network. The output of the model ht is mapped to the corresponding output value yt̃ through a 

fully connected layer ffc
: 

  ottot bXhWo   ,1
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yt̃ = ffc
(ht) 

After training, the trained model is used to make predictions. The entire process can be represented 

using the following equation: 

yt+1̃ = ffc
(fw(ht, Xt)) 

3.2.2 NAR Model 

The Nonlinear Autoregressive (NAR) model is a class of nonlinear time series models that aims to 

capture the complex nonlinear relationships among variables in a time series. It is typically used for 

forecasting and predictive modeling in various fields, such as finance, economics, and engineering. 

The NAR model extends the traditional autoregressive (AR) model by introducing nonlinear 

transformation functions of past observations. In other words, it models the dependency of the 

current observation on not only the past observations but also on nonlinear transformations of those 

observations. This allows the model to capture more complex patterns and dependencies within the 

time series. 

In our case, we continually apply NAR model to construct our baseline model. Similarly, we assume 

{Xn} to be our input series. We construct the network as follows: 

1. Firstly, transform the input sequence into a form that can be input into a neural network: 

Xi =
1

ω
∑ Xj

i

j=i−ω+1

 

2. The input sequence is transformed linearly and non-linearly to obtain the hidden state: 

hi = max(0, WhXi + bh) 

3. The output is obtained by linear transformation of the hidden state: 

yi = Wohi + bo 

4. RESULTS 

  

(a) (b) 
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(c) (d) 

Figure 1: Real BPT (a) and Predicted PoW Term of LSTM (b), NAR (c), and RNN (d) 

Figure 1 displays the predicted PoW Term of LSTM (Long Short Term Memory), NAR (Nonlinear 

Autoregressive), and RNN (Recurrent Neural Networks) in red lines. It shows that their predicted 

results are roughly the same. However, compared with the real BPT (the blue line), the predictions 

of the three algorithms have small fluctuations, with a larger lower bound, smaller upper bound, and 

more symmetrical structures. Moreover, focusing on the shape of their lower bound, LSTM is the 

most similar one to the original test data.  

Table 1: Standard Deviation of prediction of LSTM, NAR, and RNN  

 
LSTM NAR RNN 

After prediction 0.8700 1.0411 1.0390 

 

  

(a) (b) 
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(c)  

Figure 2: Standard Deviation of LSTM (a), NAR (b), and RNN (c) 

The standard deviation of test sets before prediction is 1.2713. As Table 1 shows, the three 

algorithms can reduce the volatility of the predicted data, especially for LSTM. Figure 2 

demonstrates the details of the changes in standard deviation as the amount of sample data increases. 

The red lines are the predicted results of LSTM, NAR, and RNN, respectively. The blue lines are 

the results of corresponding test datasets before prediction. Figure 2 has the additional information 

that as the amount of data increases, the standard deviation converges. Among them, the 

convergence value of LSTM is slightly smaller than 1, which is the opposite of NAR and RNN, 

indicating less volatility of BPT as we attempt to apply LSTM models. Such results are meaningful 

when dealing with tasks like prediction of BPT as LSTM are more capable of absorbing information 

in the past. 

5. DISCUSSION 

The objective of the report is to explore the volatility control capabilities of LSTM, using the other 

two machine learning algorithms, RNN and NAR, as the baseline. In the results section, we compare 

their prediction results and prediction standard deviation with the original test set. Among the 

algorithms, LSTM has the best performance since it is more effective in controlling the volatility of 

data; meanwhile, it can capture the changing trend of the original test dataset. 

Our work also provides a solution for current difficulty adjustment algorithms. The suggested 

technique aimed to be reliable enough to minimize the deviation of difficulty variations, resulting 

in more stable generation of blocks. Our method maximized the probability to produce equal and 

consistent difficulty outputs from chains in network.  

However, more issues could also be investigated. Our deep learning approach has its natural 

limitation in its running time, and it’s of significance to introduce incremental learning to reduce 

training time. Also, it will be more popular if this method can be implemented on the chains of 

Bitcoin, in which we believe our strategy will also work well. 

6. CONCLUSION 



11 

 

In this paper, we propose an advanced difficulty control algorithm for PoW-based Ethereum using 

a deep-learning method. Simulations based on real data reveal that our LSTM-based algorithm 

preserves the low volatility of the block difficulty as well as its producing time compared with other 

baseline models.  
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